Systems and methods for storing, analyzing, and retrieving medical data

Abstract

Physiological information can be stored in a dynamic round-robin database. Parameter descriptors may be used to identify parameter values in the records. The parameter values can be dynamically updated by changing the parameter descriptors. In addition, the size of files used in the database can be dynamically adjusted to account for patient condition. In certain implementations, the round-robin database can be adaptive, such that an amount of data stored in the database is adapted based on patient condition and/or signal condition. Additionally, medical data obtained from a clinical network of physiological monitors can be stored in a journal database. The medical data can include device events that occurred in response to clinician interactions with one or more medical devices and device-initiated events, such as alarms and the like. The journal database can be analyzed to derive statistics, which may be used to improve clinician and/or hospital performance.

Claims

1. A method of dynamically adjusting physiological information provided to a medical database, the method comprising: receiving a first indication of a first acuity level of a patient in communication with a patient monitor, the patient monitor comprising one or more processors operative to process physiological data obtained from one or more sensors coupled to a medical patient; providing a first amount of physiological information to an adaptive round-robin database (RRDB) RRDB in response to receiving the first indication; receiving a second indication of a second acuity level of the patient, the second acuity level being greater than the first acuity level; and in response to receiving the second indication, adapting an amount of data provided to the adaptive RRDB by providing a second amount of physiological information to the adaptive RRDB that is greater than the first amount of physiological information; wherein the first and second acuity levels of the patient are determined by at least analyzing an alarm history of the patient, such that multiple alarms or severe alarms in the alarm history of the patient results in a higher acuity level, and said providing the second amount of physiological information to the adaptive RRDB comprising instructing the RRDB to allocate additional storage for the RRDB by creating a new RRDB file, said instructing comprising one or more of the following based on the acuity level: instructing the RRDB to create the new file for each device connected to the patient when the acuity level is at a first level; instructing the RRDB to create the new file for each parameter measured when the acuity level is at a second level more acute than the first level; or instructing the RRDB to create the new file for each channel of one of the one or more sensors when the acuity level is at a third level more acute than the second level. 2. The method of claim 1 , wherein determining the first and second acuity levels of the patient comprises analyzing a plethysmograph variability index. 3. The method of claim 1 , wherein determining the first and second acuity levels of the patient comprises analyzing a data confidence indicator.
BACKGROUND Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, and the like. Clinicians, including doctors, nurses, and other medical personnel, use the physiological parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients. Many patient monitoring devices provide an alarm function that triggers an alarm when certain physiological parameters exceed safe thresholds. Situations giving rise to an alarm might include, for example, decreased heart rate, respiratory rate, or low blood oxygen saturation levels. Alarms enable clinicians to respond rapidly to possible life-threatening situations. Alarms may be audible, visual, or transmitted over a network to locations in a hospital where clinicians are not in direct view of a patient. Alarms and other physiological information are often transmitted to a central nurses' station or the like, where nurses or other clinicians can monitor several patients at once. SUMMARY OF CERTAIN EMBODIMENTS In a multi-patient monitoring environment having a plurality of patient monitoring devices in communication with one or more clinician monitoring stations, a method of storing physiological information obtained from a medical patient includes, in certain embodiments: receiving identification information from a patient monitor over a network, the patient monitor having one or more processors operative to process physiological data obtained from one or more sensors coupled to a medical patient; in response to receiving the identification information, retrieving first parameter descriptors corresponding to the patient monitor based at least partly on the identification information, where each first parameter descriptor can identify a parameter measurable by the patient monitor; creating a round-robin database (RRDB) file having a header that has the first parameter descriptors; receiving the physiological data from the patient monitor, where the physiological data has second parameter descriptors that can identify the physiological data; and using the first parameter descriptors in the header to map the physiological data to locations in the RRDB file based at least partly on the second parameter descriptors received from the patient monitor. In certain embodiments, a method of journaling medical data from a plurality of medical devices includes receiving messages from a plurality of medical devices over a clinical network, where the medical devices has patient monitors, and where each patient monitor has one or more processors that can process physiological information received from one or more sensors coupled to a medical patient; processing the messages to determine a medical event described by each of the messages, where the medical event includes one or more of the following: a first device event occurring in response to a clinician interaction with a selected one of the medical devices, and a second device event occurring without clinician interaction with the selected medical device; storing information about the one or more medical events in a journal database, where the journal database has physical computer storage; in response to a request for a medical events report, obtaining medical statistics about the medical events stored in the journal database; and generating a report that includes the medical statistics. Additionally, in various embodiments, a method of dynamically adjusting types of physiological information obtained from a medical patient can include obtaining first physiological data corresponding to one or more first physiological parameters of a medical patient using one or more processors that can process physiological signals measured by one or more sensors coupled to the patient; automatically associating the first physiological data with first parameter descriptors to generate first associated physiological data, where the first parameter descriptors can describe the one or more first physiological parameters in the first physiological data; providing the first associated physiological data to a round-robin database, where the first parameter descriptors can describe the first physiological data in the round-robin database, and where the round-robin database has physical computer storage; obtaining second physiological data corresponding to one or more second physiological parameters of the medical patient; automatically associating the second physiological data with second parameter descriptors to generate second associated physiological data; and providing the second associated physiological data to the round-robin database. Various implementations of a system for storing physiological information obtained from a medical patient include a network management module that can: receive identification information from a patient monitor over a network, where the patient monitor has one or more processors that can process physiological data obtained from one or more sensors coupled to a medical patient; and receive the physiological data from the patient monitor, where the physiological data includes first parameter descriptors operative to identify the physiological data; a round-robin database (RRDB) component operative to, in response to receiving the identification information from the network management module: retrieve second parameter descriptors corresponding to the patient monitor based at least partly on the identification information, where each second parameter descriptor can identify a parameter measurable by the patient monitor; create an RRDB file having a header, the header including the second parameter descriptors; and use the second parameter descriptors in the header to map the physiological data to locations in the RRDB file based at least partly on the first parameter descriptors received from the patient monitor. BRIEF DESCRIPTION OF THE DRAWINGS Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure. In the drawings, similar elements have similar reference numerals. FIG. 1 is a block diagram illustrating an embodiment of a clinical network environment; FIG. 2 is a block diagram illustrating a more detailed embodiment of the clinical network environment of FIG. 1 ; FIG. 3 is a block diagram illustrating an embodiment of a round-robin database file for storing physiological data in the clinical network environment of FIG. 1 or 2 ; FIG. 4 is a more detailed embodiment of the round-robin database file of FIG. 3 ; FIGS. 5A through 5C are flow charts illustrating embodiments of processes for using a round-robin database for storing physiological data; FIG. 6A is a flow chart illustrating an embodiment of a process for journaling medical events in a journal database; FIG. 6B is a flow chart illustrating an embodiment of a process for correlating data from the journal database and the round-robin database; and FIG. 7 is a screen shot of an example user interface for monitoring patients in the clinical network environment of FIG. 1 . DETAILED DESCRIPTION In certain embodiments, systems and methods are provided for rapidly storing and acquiring physiological trend data. For instance, physiological information obtained from a medical patient can be stored in a round-robin database. The round-robin database can store the physiological information in a series of records equally spaced in time. Parameter descriptors may be used to identify parameter values in the records. The parameter values can be dynamically updated by changing the parameter descriptors to provide for a flexible database. In addition, the size of files used in the database can be dynamically adjusted to account for patient condition. Additionally, in certain embodiments, medical data obtained from a clinical network of physiological monitors can be stored or journaled in a journal database. The medical data can include device events that occurred in response to clinician interactions with one or more medical devices. The medical event data may also include device-initiated events, such as alarms and the like. The medical data stored in the journal database can be analyzed to derive statistics or metrics, which may be used to improve clinician and/or hospital performance. As used herein the terms “round-robin database” and “RRDB,” in addition to having their ordinary meaning, can also describe improved database structures having unique characteristics and features disclosed herein. Sometimes these structures are referred to herein as dynamic RRDBs or adaptive RRDBs. FIG. 1 illustrates an embodiment of a clinical network environment 100 . The clinical network environment 100 includes a multi-patient monitoring system (MMS) 120 in communication with one or more patient monitors 140 , nurses' station systems 130 , and clinician devices 150 over a network 110 . In certain embodiments, the MMS 120 provides physiological data obtained from the patient monitors 140 to the nurses' station systems 130 and/or the clinician devices 150 . Additionally, in certain embodiments, the MMS 120 stores physiological information and medical event information for later analysis. The network 110 of the clinical network environment 100 can be a LAN or WAN, wireless LAN (“WLAN”), or other type of network used in any hospital, nursing home, patient care center, or other clinical location. For ease of illustration, the remainder of this specification will describe clinical environments in the context of hospitals; however, it should be understood that the features described herein may also be employed in other clinical locations or settings. In some implementations, the network 110 can interconnect devices from multiple hospitals or clinical locations, which may be remote from one another, through the Internet, a leased line, or the like. Likewise, the various devices 120 , 130 , 140 , and 150 of the clinical network environment 100 may be geographically distributed (e.g., among multiple hospitals) or co-located (e.g., in a single hospital). The patient monitors 140 may be point-of-care (POC) instruments or the like that monitor physiological signals detected by sensors coupled with medical patients. The patient monitors 140 may process the signals to determine any of a variety of physiological parameters. One example of a physiological parameter is blood oxygen saturation (SpO 2 ). Other examples of physiological parameters are described below with respect to FIG. 2 . The patient monitors 140 can provide the physiological information to the MMS 120 . The patient monitors 140 can also provide information on medical events, such as alarms, to the MMS 120 . Alarms can be triggered, for example, in response to a physiological parameter falling outside of a normal range. Alarms can also include alerts regarding equipment failures, such as a probe-off condition where a sensor has fallen off of a patient. Other examples of medical events are described below with respect to FIG. 2 . In various embodiments, the patient monitors 140 provide the physiological information and medical events to the MMS 120 . The MMS 120 is described in greater detail below. In some implementations, the patient monitors 140 may provide at least some of this information directly to the nurses' station systems 130 and clinician devices 150 . The nurses' station systems 130 can be desktop computers, laptops, work stations, or the like that are located at a nurses' station. One or more nurses' station computers 130 can be located at a single nurses' station. The nurses' station computers 130 can receive and display physiological information and alarm data received from the MMS 120 (or monitors 140 ). In certain embodiments, the nurses' station computers 130 use a graphical user interface (GUI) that provides a streamlined, at-a-glance view of physiological and medical information. An example of this GUI is described below with respect to FIG. 7 . The clinician devices 150 can include any of a variety of devices used by clinicians, such as pagers, cell phones, smart phones, personal digital assistants (PDA), laptops, tablet PCs, personal computers, and the like. The clinician devices 150 are able to receive, in some embodiments, physiological information and alarms from the MMS 120 (or monitors 140 ). Physiological and alarm data can be provided to a particular clinician device 150 , for example, in response to an alarm. The clinician devices 150 can, in some instances, receive values and waveforms of physiological parameters. The MMS 120 in certain embodiments includes one or more physical computing devices, such as servers, having hardware and/or software for managing network traffic in the network 110 . This hardware and/or software may be logically and/or physically divided into different servers 120 for different functions, such as communications servers, web servers, database servers, application servers, file servers, proxy servers, and the like. The MMS 120 can use standardized protocols (such as TCP/IP) or proprietary protocols to communicate with the patient monitors 140 , the nurses station computers 130 , and the clinician devices 150 . In one embodiment, when a patient monitor 140 wishes to connect to the MMS 120 , the MMS 120 can authenticate the patient monitor 140 and provide the monitor 140 with context information of a patient coupled to the monitor 140 . Context information can include patient demography, patient alarm settings, and clinician assignments to the patient, among other things. Examples of context information are described in U.S. application Ser. No. 11/633,656 filed Dec. 4, 2006, titled “Physiological alarm notification system,” the disclosure of which is hereby incorporated by reference in its entirety. The MMS 120 may obtain this context information from the nurses station systems 130 or other hospital computer systems, where patient admitting information is provided. Upon connecting to a patient monitor 140 , the MMS 120 may receive physiological information and medical events from the patient monitors 140 . The MMS 120 may provide at least a portion of the physiological information and events to the nurses' station systems 130 and/or clinician devices 150 . For example, the MMS 120 may provide physiological data and alarms for a plurality of patient monitors 140 to a nurses' station system 130 , where nurses can evaluate the data and/or alarms to determine how to treat patients. Similarly, the MMS 120 may send wireless pages, emails, instant messages, or the like to clinician devices 150 to provide clinicians with physiological data and alarms. Advantageously, in certain embodiments, the MMS 120 can store physiological information obtained from the patient monitors 140 in a round-robin database (RRDB) 124 . The RRDB 122 of various embodiments includes a streamlined database structure that facilitates rapidly storing and retrieving patient data. The RRDB 122 can therefore be used in certain embodiments to rapidly provide physiological trend data to the nurses' stations 130 and to the clinician devices 150 . Thus, for example, if a clinician desires to see a patients physiological trends over a certain time period, such as the past hour, the clinician can use a nurses' station computer 130 or clinical device 150 to query the MMS 120 . The MMS 120 may then obtain physiological information corresponding to the desired time period from the RRDB 122 . Advantageously, the RRDB 122 can enable faster acquisition of trend data then is possible with relational databases currently used by hospital monitoring systems. Additional uses and optimizations of the RRDB 122 are described below. In certain embodiments, the MMS 120 also archives or stores information about medical events in a journal database 124 . The medical events can include events recorded by devices such as the patient monitors 140 , nurses' station systems 130 , and clinician devices 150 . In particular, the medical events can include device events that occur in response to a clinician's interaction with a device, such as a clinician-initiated deactivation of an alarm. The medical events can also include device events that occur without a clinician's interaction with the device, such as the alarm itself. Additional examples of medical events are described below with respect to FIG. 2 . The MMS 120 may analyze the medical event information stored in the journal database 124 to derive statistics about the medical events. For example, the MMS 120 can analyze alarm events and alarm deactivation events to determine clinician response times to alarms. Using these statistics, the MMS 120 may generate reports about clinician and/or hospital performance. Advantageously, in certain embodiments, these statistics and reports may be used to improve the performance of clinicians and hospitals. For instance, in certain situations, the reports might help hospitals discover the cause of issues with patient monitors 140 . The following example scenario can illustrate potential benefits of such a report. SpO 2 alarm levels tend to be different for adults and neonates. However, some clinicians may not know this and may modify neonate SpO 2 monitors to include adult alarm levels. These changes can result in many false alarms, which may cause clinicians to become frustrated and avoid using the patient monitors 140 . By journaling medical events such as clinician alarm changes, it can be determined by an analysis of the journaled data that clinicians were inappropriately adjusting alarm settings on neonate monitors. A hospital could then use this information to take corrective action, such as by fixing the alarm limits and training the clinicians. Although not shown, administrative devices may be provided in the clinical network environment 100 . The administrative devices can include computing devices operated by hospital administrators, IT staff, or the like. Using the administrative devices, IT staff may, for example, promulgate changes to a plurality of patient monitors 140 , nurses' station systems 130 , and the MMS 120 . The administrative devices may also allow IT staff to interface third-party systems with the MMS 120 , such as electronic medical record (EMR) systems. The third party systems may be used, for instance, to change alarm settings on a plurality of monitors from an administrative device. Actions performed by administrators, IT staff, and administrative devices in general may also be journaled in the journal database 124 . FIG. 2 illustrates a more detailed embodiment of a clinical network environment 200 . The clinical network environment 200 includes a network 210 , a patient monitor 240 , a nurses' station system 230 , an MMS 220 , an RRDB 222 , and a journal database 224 . These components may include all the functionality described above with respect to FIG. 1 . One monitor 240 and nurses' station system 230 are shown for ease of illustration. In addition, although not shown, the clinician devices 150 described above may also be included in the clinical network environment 200 . The depicted embodiment of the patient monitor 240 includes a monitoring module 242 , an RRDB module 244 , and a journal module 246 . Each of these modules may include hardware and/or software. Other components, such as a communications module, are not shown but may be included in the patient monitor 240 in various implementations. The monitoring module 242 can monitor physiological signals generated by one or more sensors coupled with a patient. The monitoring module 242 may process the signals to determine any of a variety of physiological parameters. For example, the monitoring module 242 can determine physiological parameters such as pulse rate, plethysmograph waveform data, perfusion index, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“HbT” or “SpHb”), arterial oxygen saturation (“SpO 2 ”), fractional arterial oxygen saturation (“SpaO 2 ”), oxygen content (“CaO 2 ”), or the like. In addition, the monitoring module 242 may obtain physiological information from acoustic sensors in order to determine respiratory rate, inspiratory time, expiratory time, inspiration-to-expiration ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases the monitoring module 242 monitors other physiological sounds, such as heart rate (e.g., to help with probe-off detection), heart sounds (e.g., S1, S2, S3, S4, and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload. Moreover, the monitoring module 242 may monitor a patient's electrical heart activity via electrocardiography (ECG) and numerous other physiological parameters. In some implementations, the patient monitors 140 may also determine various measures of data confidence, such as the data confidence indicators described in U.S. Pat. No. 7,024,233 entitled “Pulse oximetry data confidence indicator,” the disclosure of which is hereby incorporated by reference in its entirety. The patient monitors 140 may also determine a perfusion index, such as the perfusion index described in U.S. Pat. No. 7,292,883 entitled “Physiological assessment system,” the disclosure of which is hereby incorporated by reference in its entirety. Moreover, the patient monitors 140 may determine a plethysmograph variability index (PVI), such as the PVI described in U.S. Publication No. 2008/0188760 entitled “Plethysmograph variability processor,” the disclosure of which is hereby incorporated by reference in its entirety. The parameters described herein are merely examples, and many other parameters may be used in certain embodiments. In certain embodiments, the RRDB module 244 receives physiological information from the monitoring module 242 and transmits the physiological information over the network 210 to the MMS 220 . In response, as will be described in greater detail below, the MMS 220 may store the physiological information in the RRDB 222 . Advantageously, in certain embodiments, the RRDB module 244 associates the physiological information with parameter descriptors prior to transmittal to the MMS 220 . The parameter descriptors may be identifiers that the RRDB module 244 associates with each measured physiological parameter value. The MMS 220 may use these parameter descriptors to identify the types of measured parameters received from the RRDB module 244 . The parameter descriptors may be descriptors generated according to a markup language specification, such as an extensible markup language (XML) specification. As such, the parameter descriptors may include tags that enclose measured physiological values. These tags may be machine readable or human readable. For instance, the tags may include numerical identifiers (e.g., “0017”) or descriptive identifiers, such as “SPO2” or “SPHB.” A simplified example stream of physiological information from an SpO 2 sensor and an SpHb sensor associated with parameter descriptors might be as follows: <SPO2>96</SPO2><SPHB>14.1</SPHB> <SPO2>97</SPO2> <SPHB>14.0</SPHB>, and so on. In one embodiment, the RRDB module 244 may have stored (e.g., in a data file) a set of predefined parameter descriptors available for the patient monitor 240 . These parameter descriptors may correspond to possible parameters that may be measured by the patient monitor 240 . The parameter descriptors transmitted by the RRDB module 244 may depend on the particular subset of parameters measured by the patient monitor 240 . If an additional (or different) parameter is subsequently measured by the patient monitor 240 , the RRDB module 240 may dynamically update the parameter descriptors that are sent to the MMS 220 . Likewise, if the patient monitor 240 ceases to measure one of the parameters, the RRDB module 244 may cease to transmit the corresponding parameter descriptor to the MMS 220 . The patient monitor 240 also includes a journal module 246 in the depicted embodiment. The journal module 240 may record medical events related to the patient monitor 240 . These medical events can include clinician-initiated events, such as changes to alarm settings (e.g., maximum and minimum permitted parameter values), types of parameters monitored/sensors connected to the patient monitor 240 , and the like. The journal module 246 may record these events by, for example, acting as a key logger or the like to record button presses of a clinician. The journal module 246 may also include current-sense circuitry to detect when sensors or cables are connected to the monitor 240 , and so forth. The medical events may also include non-clinician initiated events, such as alarms and alerts. The medical events can also include events from administrative devices (not shown), such as EMR updates to alarm settings across the network 210 . The journal module 246 may log these events locally at the patient monitor 240 . In addition, or instead of logging the events locally, the journal module 246 may transmit information about the events to the MMS 220 . In turn, the MMS 220 can store the event information in the journal database 224 . The nurses' station system 230 is shown in the depicted embodiment having a patient monitoring client 232 . The patient monitoring client 232 can enable the nurses' station system 230 to receive and display physiological information and alarm information. The patient monitoring client 232 includes a user interface module 234 . The user interface module 234 may include, for example, software for displaying physiological information, patient information, and medical event information for a plurality of patient monitors 240 . The user interface module 234 may also allow clinicians to admit and discharge patients, remotely modify device alarm limits, and the like. An example user interface that may be generated by the user interface module 234 is described below with respect to FIG. 7 . The patient monitoring client 232 further includes a journal module 236 . The journal module 236 may include software for recording medical events related to the patient monitoring client 232 . For example, the journal module 236 may record which clinicians login to and logoff of the patient monitoring client 232 and when these events occur; admit and discharge events; and other clinician keystrokes, mouse clicks, and interactions with the patient monitoring client 232 . The journal module 236 may log this event information locally at the nurse's station system 230 and/or transmit the event information to the MMS 220 . As shown, the MMS 220 may include a network management module 221 , an RRDB management module 223 , and a journal management module 225 , each of which may include one or more software components. In one embodiment, the network management module 221 receives messages containing physiological information and medical event data from the patient monitor 240 . The network management module 221 can provide at least a portion of this data to the nurses' station system 230 and clinician devices 150 of FIG. 1 . The network management module 221 can also provide the physiological information to the RRDB management module 223 and provide the medical event data to the journal management module 225 . In certain embodiments, the RRDB management module 223 stores the physiological information received from the patient monitor 240 in the RRDB 222 . When the patient monitor 240 initially connects to the MMS 220 , or at another time, the RRDB management module 223 can create one or more RRDB files in the RRDB 222 corresponding to the patient monitor 240 . The contents of this file or files may depend on the type of patient monitor 240 , which may be defined by the patient monitor's 240 serial number, model number, vendor identifier, combinations of the same, or the like. Specific examples of the structure and contents of RRDB files are described below with respect to FIGS. 3 and 4 . The RRDB management module 223 can also provide physiological trend data stored in the RRDB to the network management module 221 for transmittal to monitors 240 , nurses' station systems 230 , and/or clinician devices. The RRDB management module 223 may also provide physiological data from the RRDB 222 to the journal management module 225 for purposes described below with respect to FIG. 6B . The journal management module 225 , in certain implementations, receives medical event data from the monitor 240 and the nurses' station system 230 and stores this data in the journal database 224 . In an embodiment, the journal database 224 is a relational database; however, other structures may be used. Each entry of event data may have a corresponding time stamp that indicates when an event occurred. This time stamp may be provided by the journal modules 246 or 236 or by the journal management module 225 . The journal management module 225 may also store event counters in the journal database 224 that reflect a number of times medical events occurred. For example, counters could be stored that count how many alarms occurred within a period of time or how many times a clinician logged on or logged off of a network device. Advantageously, the journal management module 225 may, in certain embodiments, analyze the medical data in the journal database 224 to determine statistics or metrics of clinician and/or hospital performance. The journal management module 225 may provide an interface to users of the nurses' station system 230 or another computing device to access these statistics. In one example embodiment, journal management module 225 can analyze alarm events and alarm deactivation events to determine clinician response times to alarms. The journal management module 225 may further determine the clinician response times in nurses' day and night shifts. The journal management module 225 may generate reports of these statistics so that hospital administrators, for example, may determine which shifts perform better than others. More generally, the journal management module 225 may generate reports about clinician and/or hospital performance by analyzing various statistics derived from data in the journal database 224 . One example of a report is a monitoring report card, which grades a given hospital against other hospitals (or nurses' station against nurses' station, and the like) based at least partly on the derived statistics. Advantageously, hospital administrators, clinicians, and the like may use these statistics and reports to improve the clinician and hospital performance. Some or all of the features of the clinical network environment 200 may be adapted in certain embodiments. For instance, either or both of the journal modules 246 or 236 may perform some or all of the functions of the journal management module 225 . Likewise, one or more journal databases 224 may be stored at the patient monitor 240 and/or nurses' work station 230 . Similarly, the RRDB module 224 may perform some or all of the functions of the RRDB management module 223 , and an RRDB 222 may be stored at the patient monitor 240 . In addition, in some implementations, the clinician devices 150 of FIG. 1 may have RRDB and/or journal modules as well. Many other adaptations, configurations, and combinations may be made in other embodiments. FIG. 3 illustrates an embodiment of an RRDB file 300 for storing physiological data in a clinical network environment, such as the clinical network environments 100 or 200 . By virtue of the configuration of the RRDB file 300 , in certain embodiments the MMS 120 or 220 described above can rapidly store and retrieve physiological data. The RRDB file 300 of certain embodiments has a flat file structure; however, other structures (such as relational structures) may also be used. In an embodiment, a single file 300 corresponds to one patient; however, many files 300 can be used for a single patient. In addition, in some implementations, files 300 can be shared by multiple patients. The RRDB writes physiological information to records 362 in the file 300 . In certain embodiments, each record 362 is one line in the RRDB; however, records 362 can include multiple lines. For example, each record 362 could include one or more numbers representing the values of one or more physiological parameters, waveforms, and the like. In addition, in some embodiments, alarm limits and other information may be stored in each record 362 . Advantageously, in certain embodiments, different levels of detail may be stored in RRDB files 300 . For instance, a file 300 may be allocated for a single patient, for a device, for a single parameter or technology of the device, or for a channel corresponding to a parameter. Example criteria for allocating these files is described below. The channel may be a value or set of values measured by the device. For example, for an SpO 2 sensor, there may be channels for the different wavelengths of light used to obtain the SpO 2 reading, e.g., red and infrared (IR) channels. Other optical sensors may have one channel for each wavelength of light used by the sensor (which may be more than two). Referring again to FIG. 2 , the RRDB module 244 of the patient monitor 240 may provide different amounts of physiological information to the RRDB 222 , corresponding to the different types of RRDB files just described. The RRDB module 244 may select a level of detail based at least partly on a health status of the patient. If the patient is relatively healthy, for instance, the RRDB module 244 may send less information to the RRDB 222 . In contrast, if the patient is relatively less healthy (e.g., more acute), the RRDB module 244 may send a higher granularity of physiological information to the RRDB 222 . In other embodiments the RRDB module 244 may also adapt the amount of physiological information transmitted to the RRDB 222 based on other factors, such as the degree of noisiness of physiological signals, variability of the signals, and so on. More particularly, in some embodiments the RRDB module 244 may instruct the RRDB management module 223 to open a single file for a patient. This file may contain a relatively high level of detail for each device connected to the patient. This setting may be appropriate in circumstances where the patient is relatively healthy. If the patient is less healthy, the RRDB module 244 may instruct the RRDB management module 223 to create a single file for each device connected to the patient. Each of these files may have more detail than may be included in a single file for a patient. Continuing, at lower levels of health, the RRDB module 244 may instruct the RRDB management module 223 to create a file for each parameter measured by the patient monitor 240 , or a file for each channel of a sensor (which may include raw data from the sensor). Thus, greater amounts of detail may be provided as the patient's health becomes more acute. The RRDB module 244 may dynamically adjust the amount of data sent and/or the frequency that data is sent to the RRDB 222 based on the patient's health. As an example, if the patients SpHb level drops below a safe level (e.g., outside of alarm limits), the RRDB module 244 may send more detailed physiological information to the RRDB 222 or may send physiological information more frequently. In response to receiving additional detail, the RRDB management module 223 may create new files to store the more detailed physiological information. Once the patient's SpHb returns to normal, the RRDB module may send a lower level of detail to the RRDB 222 . The RRDB management module 223 may then create a new file to store the lower level of detail, or use a previously-created lower-level detail file. Thus, in certain embodiments, the RRDB module 244 and the RRDB management module 223 may perform adaptive control of RRDB file storage. Thus, in certain embodiments, the RRDB may be considered an adaptive or dynamic RRDB. Additionally, in certain embodiments, the RRDB module 244 may send multiple streams of physiological data to the RRDB 222 . Different streams may have different granularities of physiological data and may be stored in different files in the RRDB 222 . For example, each stream of physiological data may include one or more channels of physiological information. Each stream may correspond to one or more files in the RRDB 222 . Referring again to FIG. 3 , the RRDB can store a predetermined number of records 362 in the file 300 . After writing data to the last record 362 a in the file 300 , the RRDB automatically loops back to and overwrites the first record 362 b —hence the term “round-robin.” The records 362 can be stored at regular (e.g., equal) time intervals, denoted by Δt in the FIGURE. As each record 362 is stored in the RRDB, a time stamp can be applied to the record 362 . Thus, Δt can represent the difference in value between the time stamps of any two sequential records 362 . Alternatively, a header section of the file 300 (see FIG. 4 ) may include a predefined time step that dictates when new values are recorded in the file 300 . In some instances, a patient monitor may not send data to the RRDB, either because the monitor ceased to monitor data or because the monitor determines that data need not be recorded (e.g., because the patient is healthy). To preserve the time interval structure when the monitor ceases to send data, zeros or other non-data values (such as NaN—“not a number”) can be stored in one or more records 362 of the file 300 in place of physiological information. To read records 362 from the file 300 , a pointer or the like could be instructed to obtain k records, such as the previous k records (e.g., kΔt). For example, to obtain the first k records 362 , a file pointer could be advanced over the most recent k records 362 while the RRDB management module 223 (for instance) reads the k records 362 . Any subset of the records 362 can be obtained, including a subset of the most recent records 362 or even all of the records 362 . In addition, portions of the records 362 may be read. For example, values for a particular parameter from a plurality of parameters may be read from the previous k records 362 . Advantageously, records 362 can be obtained from the RRDB several orders of magnitude faster than from a relational database. For instance, in one embodiment, searches in the database can be performed as zero-order searches. Thus, physiological information trends can be rapidly streamed or otherwise provided to clinical devices, nurses station computers, and the like. In some implementations, the RRDB can be configured such that physiological information is read and transmitted to clinical devices fast enough to comply with certain standards promulgated by the Joint Commission on the Accreditation of Healthcare Organizations (JCAHO) for the transmission of alarms. Thus, for example, if a standard required alarms to be transmitted to clinicians within five seconds of the alarm occurring, the RRDB can be configured to provide trend data to the clinician device along with the alarm notification within the five second period. FIG. 4 illustrates a more detailed embodiment of an RRDB file 400 . The RRDB file includes a header 410 and a plurality of records 420 . The header 410 includes data that may be used by the RRDB management module 223 , for example, to read and write to the file 400 , as well as search through the file 400 . In the depicted embodiment, fields in the header 410 are denoted by XML tags. This is merely one implementation that may be varied in other embodiments. The fields in the example header 410 shown include a start time stop time, step interval, number of parameters, and parameter list. The start and stop times are measured in seconds in the depicted embodiment (e.g., seconds from Unix epoch—Jan. 1, 1970). The step interval (30 seconds in the embodiment shown) indicates how frequently the records 420 are written to the file 400 . The number of parameters (in this case, 7) indicates how many physiological parameters are being monitored. The parameter list includes a list of parameter descriptors corresponding to the parameters being monitored. Each of the fields in the header 410 may be adjusted by the RRDB management module 223 . Additional or fewer fields may be included in certain embodiments. Each record 420 in the depicted embodiment is a single line including parameter values separated by a delimiter character (in this case, a space). The parameter values in the first record 420 , for example, are 96, 55, 8.9, 14, 14.1, 0.5, and 1.0. These values correspond to the order of the parameter descriptor in the parameter list of the header 410 . Thus, the value 96 corresponds to the SPO2 parameter descriptor, the value 55 corresponds to the BPM (beats per minute) parameter descriptor, and so on. Advantageously, in certain embodiments, because the parameter list in the header 410 includes the parameter descriptors, the records 420 can be written without including the parameter descriptors in the individual records 420 . As a result, in certain implementations, the file 400 can have a smaller size than if the parameter descriptors were embedded in the records 420 . FIGS. 5A through 5C illustrate embodiments of processes 500 for using an RRDB to store physiological data. Referring to FIG. 5A , an embodiment of a process 500 A for providing physiological data to an RRDB is shown. In one embodiment, the process 500 A may be implemented by any of the MMS's described above (e.g., the MMS 120 or 220 ). In particular, the process 500 A may be implemented by the RRDB management module 223 of FIG. 2 . Alternatively, at least some of the blocks may be implemented by the RRDB module 244 of the patient monitor 240 . Advantageously, in certain embodiments, the process 500 A enables RRDB files to be created for patient monitors that communicate with a MMS over a clinical network. At block 502 , identification information is received from a patient monitor. The identification information may include, for example a serial number of the patient monitor, a model number of the patient monitor, a vendor of the patient monitor, identification of one or more original equipment manufacturer (OEM) modules of the patient monitor, combinations of the same, and the like. At block 504 , parameter descriptors corresponding to the patient monitor are retrieved based at least partly on the identification information. The parameter descriptors for each monitor may be stored in a file on the MMS 120 or 220 . For example, a set of possible parameter descriptors may be stored for each monitor serial number, which descriptors correspond to possible parameters that a given monitor can process. In certain embodiments, the parameter descriptors are extensible markup language (XML) descriptors or the like. An RRDB file with a header having the identified parameter descriptors is created at block 506 . An example of a header for an RRDB file is described above with respect to FIG. 4 . The parameter descriptors may be inserted, for example, into the parameter list shown in FIG. 4 . Thus, the parameter list for a given patient monitor may be determined by the RRDB management module 223 . As will be described below with respect to FIG. 5B , the parameter list may also be determined at least partly by the patient monitor. At block 508 , physiological data is received from the patient monitor. At block 510 , the header is used to map the physiological data to locations in the RRDB file. This mapping may be performed at least partly by using the descriptors in the data, as described above with respect to FIG. 4 . FIG. 5B illustrates another embodiment of a process 500 B for providing physiological data to an RRDB. This process 500 B may be implemented by the patient monitor (e.g., 140 or 240 ). In particular, the RRDB module 244 may perform certain blocks of the process 500 B. Alternatively, at least some of the blocks may be implemented by the RRDB module 244 of the patient monitor 240 . Advantageously, in certain embodiments the process 500 B enables RRDB files to be dynamically created based on changing parameters monitored by the patient monitor. Physiological data corresponding to one or more physiological parameters of a patient are obtained at block 512 . This block may be performed by the monitoring module 242 described above. At block 514 , parameter descriptors are associated with the physiological data to produce associated physiological data. This association may be performed by the RRDB module 244 . The association may take place in one embodiment by inserting XML tags into the physiological data. The associated physiological data is provided to an RRDB at block 516 . In response to the transmission of this associated physiological data, in one embodiment the MMS can create an RRDB file having the parameter descriptors identified in the physiological data. Alternatively, the MMS may have already created the RRDB file according to the process 500 A described above. At decision block 518 , it is determined whether different physiological parameters have been measured. If so, at block 519 , different parameter descriptors are associated with the physiological data, and at block 520 , the associated physiological data is again provided to the RRDB. Blocks 518 - 520 may be implemented by the RRDB module 244 . As an example, suppose that the parameters measured in block 512 include SpO 2 and ECG. The parameter descriptors provided in block 514 might be “SPO2” and “ECG.” If a clinician enabled an SpHb parameter measurement on the monitor at block 518 , the parameter descriptors associated with the physiological data in block 519 might now include “SPO2” and “ECG” and “SPHB.” In response to the transmission of the new associated physiological data at block 520 , the MMS may create a new RRDB file having the new parameter descriptors identified in the physiological data. Thus, the patient monitor may be able to dynamically adjust the physiological data and associated descriptors provided to the RRDB. FIG. 5C illustrates an embodiment of a process 500 C for dynamically adjusting RRDB storage corresponding to a patient monitor. In one embodiment, the process 500 C may be implemented by any of the MMS's described above (e.g., the MMS 120 or 220 ). In particular, the process 500 C may be implemented by the RRDB management module 223 . Alternatively, at least some of the blocks may be implemented by the RRDB module 244 of the patient monitor 240 . As described above with respect to FIG. 3 , the size of an RRDB file may be predetermined and may not increase. This constant size therefore can provide a predetermined storage amount for physiological trend data. The size of the RRDB file may be configured, for example, upon patient admittance to the hospital. An example size of the RRDB might correspond to 72 hours worth of data. For some acute patients, however, additional trend data may be desired. However, because the RRDB file may have a constant size, after the example 72 hours, the trend data will be overwritten. Advantageously, in certain embodiments the process 500 C enables additional trend data to be written to an RRDB. Thus, in certain embodiments, the RRDB may be considered an adaptive or dynamic RRDB. At block 532 , an initial size of an RRDB file is allocated. The initial file size may be chosen based on a projected length of stay of the patient, the patient's current health status, or the like. Alternatively, the file size may be predefined for all patients. At block 534 , physiological data received from a patient monitor is analyzed to determine the patient's acuity level. The acuity level of the patient can be determined, for instance, by analyzing the PVI of the patient, which corresponds to variability in the patient's plethysmograph. A patient with higher PVI or variability may benefit from additional trend data. Other values that may be considered in determining acuity level include the data confidence indicators described in U.S. Pat. No. 7,024,233, incorporated above, pulse rate, SpO 2 variability, and variation of any other physiological parameter. In addition, in some embodiments, acuity may be determined by examining the patient's alarm history, such that a history of multiple alarms or severe alarms may indicate acuity. At decision block 536 , it is determined whether the patient has significant acuity. If the patient has significant acuity, additional storage for RRDB data is allocated at block 538 . This initial storage may be allocated by extending the length of the RRDB file, but creating a new file, or the like. Otherwise, if the patient does not have significant acuity, the process 500 C ends. FIG. 6A illustrates an embodiment of a process 600 A for journaling medical events in a journal database. In one embodiment, the process 600 A may be implemented by any of the MMS's described above (e.g., the MMS 120 or 220 ). In particular, the process 600 A may be implemented by the journal management module 225 . Alternatively, at least some of the blocks may be implemented by the journal modules 236 , 246 . Advantageously, in certain embodiments, the process 600 A facilitates the generation of reports based on the journaled data. At block 602 , medical events are journaled in a journal database. In response to requests for report from a user (e.g., a clinician), at block 604 statistics about the medical events are obtained from the journal database. The statistics may include the type, frequency, and duration of medical events, the identity of clinicians or patients associated with the events, alarm response times combinations of the same, and the like. A report is generated at block 606 regarding the medical event statistics. At block 608 , the report is used to identify potential areas of improvement in hospital operations. For example, the report can be a “monitoring report card” that assigns scores to the hospital or clinicians of the hospital based on their performance. FIG. 6B illustrates an embodiment of a process 600 B for correlating data from a journal database and an RRDB. In one embodiment, the process 600 B may be implemented by any of the MMS's described above (e.g., the MMS 120 or 220 ). In particular, the process 600 B may be implemented by the RRDB module 223 and journal management module 225 . Alternatively, at least some of the blocks may be implemented by the RRDB module 244 and journal modules 236 , 246 . Advantageously, in certain embodiments, the process 600 B enables physiological information from the RRDB and medical events to be correlated in time. Such a reconstruction of events and physiological data can be akin to aviation “black box” technology, allowing the user to replay clinical actions leading up to medical incidents. At block 612 , the request is received from a user to review journaled and physiological data corresponding to a period of time. The user may be a clinician, hospital administrator, or the like, who wishes to determine the cause of a problem in the healthcare of a patient. For instance, the user may wish to determine why clinicians failed to respond when a patient's SpO 2 dropped below safe levels. At block 614 , journaled data is retrieved for the specified period of time from a journal database. This block may be performed by the journal management module 225 . At block 616 , physiological data for the specified period of time is retrieved from an RRDB. This block may be performed by the RRDB management module 223 . The journal data is correlated with the physiological data with respect to time at block 618 . This correlation may include reconstructing a timeline of medical events, with values of physiological parameters (optionally including waveforms) provided in the correct time sequence on the timeline. In some embodiments, to facilitate this coordination between the RRDB management module 223 and the journal management module 225 , timestamps in each database 222 , 224 may be synchronized when the data is stored. The correlated data is output for presentation to the user at block 620 . The output may include, for example, a graphical view of medical events superimposed on physiological information (e.g., a waveform), or the like. Many display formats may be used for the correlated data. FIG. 7 illustrates an example graphical user interface (GUI) 700 for monitoring patients. The GUI 700 can be provided on a nurses' station system or the like. The GUI 700 can also be displayed on a clinician device. The GUI 700 includes several display areas. In the depicted embodiment, the GUI 700 includes a patient status display area 710 . The patient status display area 710 shows the status of multiple patients in a hospital or other clinical location. In an embodiment, patient status display area 710 depicts patient status for patients in a hospital department. Advantageously, in certain embodiments, the patient status display area 710 provides an “at-a-glance” view of multiple patients health status. The patient status display area 710 includes a plurality of patient status modules 712 . Each patient status module 712 can correspond to a patient monitor that can be coupled to a medical patient. Each patient status module 712 can display a graphical status indicator 714 . An example graphical status indicator 714 is shown in the screens 700 as a miniature patient monitor icon. The graphical status indicator 714 can selectively indicate one of several states of a patient monitor. In one embodiment, four possible patient monitor states can be depicted by the graphical status indicator 714 . These include an alarm condition, a no alarm condition, patient context information status, and connection status. In various implementations, the graphical status indicator 714 changes color, shape, or the like to indicate one of the different patient monitor states. For example, if an alarm condition is present, the graphical status indicator 714 could turn red to signify the alarm. If there is no context information available for the patient (see FIG. 1 ), then the graphical status indicator 714 could turn yellow. If the device is not connected to the patient or the network, then the graphical status indicator 714 could turn gray. And if there is no alarm condition, if there is context information, and if the patient monitor is connected to the patient and the network, then the graphical status indicator 714 could turn green. Many other colors, symbols, and/or shapes could be used in place of or in combination with the above-described embodiments. Advantageously, the graphical status indicator 714 shows at a glance the status of a patient monitor. Thus, in the patient status display area 710 , several graphical status indicators 714 corresponding to several patients show an at-a-glance view for the patient monitors corresponding to these patients. A clinician can therefore readily see the needs that a patient might have with regards to alarms, connection status, and context information. Currently available graphical user interfaces for nurses' station computers tend to show a plurality of wave forms or changing physiological parameter numbers for each patient. This method of displaying patient information can be cluttered, confusing, and even hypnotic in some situations. Nurses working on a night shift, for instance, may find it difficult to concentrate on an alarm when several other patients indicators on the display have changing numbers, changing waveforms, or the like. In contrast, in the graphical interface herein described when the graphical status indicator 714 indicates an alarm condition, this alarm condition can stand out and be immediately recognized by the clinician. Moreover, the graphical status indicator 714 simplifies the first level of analysis that nurses tend to perform. In currently available devices, nurses often have to analyze waveforms at the nurses' station to determine the health status of a patient. However, using the screens 700 , a nurse need not interpret any waveforms or changing parameters of the patient, but instead can rely on the graphical status indicator 714 that indicates the presence of an alarm. In certain embodiments, the patient status modules 712 can be selected by a single mouse click or the like. Selecting a patient status module 712 in one embodiment can bring up a patient monitor view area 720 . The patient monitor view area 720 shows a view of a patient monitor corresponding to a selected patient status module 712 . In certain implementations, the patient monitor view area 720 can show a view of the screen from the actual patient monitor device at the bedside of the patient. Thus, a clinician can readily recognize the physiological parameters of the patient in a format that the clinician is likely familiar with. The patient monitor view area 720 is currently receiving physiological information from a patient. A history view area 730 in certain implementations can show medical event data corresponding to a selected patient monitor status module 712 . This medical event data can be obtained from a journal database for inclusion in the GUI 700 . The historical view 730 can show, for example, when a sensor was connected or disconnected from a patient, when alarms were active, and when a patient was admitted to the hospital or department. Although not shown, the history view area 730 can also be configured to show trend data obtained from an RRDB instead of, or in addition to, the journaled data. Depending on the embodiment, certain acts, events, or functions of any of the methods described herein can be performed in a different sequence, may be added, merged, or left out all together (e.g., not all described acts or events are necessary for the practice of the method). Moreover, in certain embodiments, acts or events may be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors, rather than sequentially. The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality may be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure. The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal. Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others. The scope of the inventions is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (282)

    Publication numberPublication dateAssigneeTitle
    US-6580086-B1June 17, 2003Masimo CorporationShielded optical probe and method
    US-6639668-B1October 28, 2003Argose, Inc.Asynchronous fluorescence scan
    US-6501975-B2December 31, 2002Masimo CorporationSignal processing apparatus and method
    US-6002952-ADecember 14, 1999Masimo CorporationSignal processing apparatus and method
    US-2005065851-A1March 24, 2005Aronoff Jeffrey M., Forsman Frederick D., Fuller Bradley J.System, method and computer program product for supplying to and collecting information from individuals
    US-6232609-B1May 15, 2001Cedars-Sinai Medical CenterGlucose monitoring apparatus and method using laser-induced emission spectroscopy
    US-5452717-ASeptember 26, 1995Masimo CorporationFinger-cot probe
    US-6861639-B2March 01, 2005Masimo CorporationSystems and methods for indicating an amount of use of a sensor
    US-6850788-B2February 01, 2005Masimo CorporationPhysiological measurement communications adapter
    US-2004127774-A1July 01, 2004Moore Mark P., Silver Ward A.Communicating medical event information
    US-6697657-B1February 24, 2004Cedars-Sinai Medical CenterMethod and devices for laser induced fluorescence attenuation spectroscopy (LIFAS)
    US-6749566-B2June 15, 2004Draeger Medical Systems, Inc.Patient monitoring area network
    US-5562002-AOctober 08, 1996Sensidyne Inc.Positive displacement piston flow meter with damping assembly
    US-5533511-AJuly 09, 1996Vital Insite, IncorporatedApparatus and method for noninvasive blood pressure measurement
    US-6525386-B1February 25, 2003Masimo CorporationNon-protruding optoelectronic lens
    US-6597933-B2July 22, 2003Masimo CorporationPulse oximetry sensor adapter
    US-6544174-B2April 08, 2003Welch Allyn Protocol, Inc.Patient monitoring system
    US-6157850-ADecember 05, 2000Masimo CorporationSignal processing apparatus
    US-D393830-SApril 28, 1998Masimo CorporationPatient cable connector
    US-7280858-B2October 09, 2007Masimo CorporationPulse oximetry sensor
    US-6334065-B1December 25, 2001Masimo CorporationStereo pulse oximeter
    US-5785659-AJuly 28, 1998Vital Insite, Inc.Automatically activated blood pressure measurement device
    US-6658276-B2December 02, 2003Masimo CorporationPulse oximeter user interface
    US-4051522-ASeptember 27, 1977Jonathan SystemsPatient monitoring system
    US-6979812-B2December 27, 2005Masimo CorporationSystems and methods for indicating an amount of use of a sensor
    US-6934570-B2August 23, 2005Masimo CorporationPhysiological sensor combination
    US-5782757-AJuly 21, 1998Masimo CorporationLow-noise optical probes
    US-7371981-B2May 13, 2008Masimo CorporationConnector switch
    US-7044918-B2May 16, 2006Masimo CorporationPlethysmograph pulse recognition processor
    US-6725075-B2April 20, 2004Masimo CorporationResposable pulse oximetry sensor
    US-7343186-B2March 11, 2008Masimo Laboratories, Inc.Multi-wavelength physiological monitor
    US-6221012-B1April 24, 2001Siemens Medical Electronics, Inc.Transportable modular patient monitor with data acquisition modules
    US-5904654-AMay 18, 1999Vital Insite, Inc.Exciter-detector unit for measuring physiological parameters
    US-5687734-ANovember 18, 1997Hewlett-Packard CompanyFlexible patient monitoring system featuring a multiport transmitter
    US-5682803-ANovember 04, 1997Iscar Ltd.Tool holder with patterned hard shim forming indented seat and method
    US-7254433-B2August 07, 2007Masimo CorporationSignal processing apparatus
    US-6184521-B2December 31, 1969
    US-D587657-SMarch 03, 2009Masimo CorporationConnector assembly
    WO-2009049254-A2April 16, 2009Masimo CorporationSystems and methods for storing, analyzing, and retrieving medical data
    US-7041060-B2May 09, 2006Masimo CorporationRapid non-invasive blood pressure measuring device
    US-7428432-B2September 23, 2008Masimo CorporationSystems and methods for acquiring calibration data usable in a pulse oximeter
    US-6542764-B1April 01, 2003Masimo CorporationPulse oximeter monitor for expressing the urgency of the patient's condition
    US-6280213-B1August 28, 2001Masimo CorporationPatient cable connector
    US-D566282-SApril 08, 2008Masimo CorporationStand for a portable patient monitor
    US-5919134-AJuly 06, 1999Masimo Corp.Method and apparatus for demodulating signals in a pulse oximetry system
    US-5375604-ADecember 27, 1994Siemens Medical Electronics, Inc.Transportable modular patient monitor
    US-7142901-B2November 28, 2006Masimo CorporationParameter compensated physiological monitor
    US-6349228-B1February 19, 2002Masimo CorporationPulse oximetry sensor adapter
    US-6784797-B2August 31, 2004Bed-Check CorporationMicroprocessor based bed patient monitor
    US-5890929-AApril 06, 1999Masimo CorporationShielded medical connector
    US-4356475-AOctober 26, 1982Siemens AktiengesellschaftSystem containing a predetermined number of monitoring devices and at least one central station
    US-6595316-B2July 22, 2003Andromed, Inc.Tension-adjustable mechanism for stethoscope earpieces
    US-6011986-AJanuary 04, 2000Masimo CorporationManual and automatic probe calibration
    US-5456252-AOctober 10, 1995Cedars-Sinai Medical CenterInduced fluorescence spectroscopy blood perfusion and pH monitor and method
    US-6928370-B2August 09, 2005Oxford Biosignals LimitedHealth monitoring
    US-5791347-AAugust 11, 1998Vital Insite, Inc.Motion insensitive pulse detector
    US-6541756-B2April 01, 2003Masimo CorporationShielded optical probe having an electrical connector
    US-5645440-AJuly 08, 1997Masimo CorporationPatient cable connector
    US-D362063-SSeptember 05, 1995Stethoscope headset
    US-5579775-ADecember 03, 1996Hewlett-Packard CompanyDynamic control of a patient monitoring system
    US-6206830-B1March 27, 2001Masimo CorporationSignal processing apparatus and method
    US-7254434-B2August 07, 2007Masimo CorporationVariable pressure reusable sensor
    US-6152754-ANovember 28, 2000Masimo CorporationCircuit board based cable connector
    US-6470199-B1October 22, 2002Masimo CorporationElastic sock for positioning an optical probe
    US-7509154-B2March 24, 2009Masimo CorporationSignal processing apparatus
    US-4887260-ADecember 12, 1989Hewlett-Packard CompanyX.25 Wide area network channel status display
    US-7530949-B2May 12, 2009Masimo CorporationDual-mode pulse oximeter
    US-6999904-B2February 14, 2006Masimo CorporationVariable indication estimator
    US-4964408-AOctober 23, 1990Thor Technology CorporationOximeter sensor assembly with integral cable
    US-2010274100-A1October 28, 2010Andrew Behar, Jeff Cobb, Alex Derchak, Barry Keenan, Dave DarnallSystems and methods for monitoring subjects in potential physiological distress
    US-6735459-B2May 11, 2004Sensidyne, Inc.Reusable pulse oximeter probe and disposable bandage apparatus
    US-6640116-B2October 28, 2003Masimo CorporationOptical spectroscopy pathlength measurement system
    US-6721582-B2April 13, 2004Argose, Inc.Non-invasive tissue glucose level monitoring
    US-6067462-AMay 23, 2000Masimo CorporationSignal processing apparatus and method
    US-6654624-B2November 25, 2003Masimo CorporationPulse oximeter probe-off detector
    US-6278522-B1August 21, 2001Masimo LaboratoriesOptical filter for spectroscopic measurement and method of producing the optical filter
    EP-1576925-A1September 21, 2005Medison Co., Ltd.Dispositif et procédé pour obtenir des images àultrasons de l'objet visé à travers un réseau de communication sans fil
    US-4674085-AJune 16, 1987American Telephone And Telegraph Co., At&T Information Systems Inc.Local area network
    US-6371921-B1April 16, 2002Masimo CorporationSystem and method of determining whether to recalibrate a blood pressure monitor
    US-7030749-B2April 18, 2006Masimo CorporationParallel measurement alarm processor
    US-6661161-B1December 09, 2003Andromed Inc.Piezoelectric biological sound monitor with printed circuit board
    US-5940182-AAugust 17, 1999Masimo CorporationOptical filter for spectroscopic measurement and method of producing the optical filter
    US-7215984-B2May 08, 2007Masimo CorporationSignal processing apparatus
    US-5602924-AFebruary 11, 1997Theratechnologies Inc.Electronic stethescope
    US-5760910-AJune 02, 1998Masimo CorporationOptical filter for spectroscopic measurement and method of producing the optical filter
    US-6515273-B2February 04, 2003Masimo CorporationSystem for indicating the expiration of the useful operating life of a pulse oximetry sensor
    US-5860919-AJanuary 19, 1999Masimo CorporationActive pulse blood constituent monitoring method
    US-4237344-ADecember 02, 1980Hospital Communication Systems, Inc.Rapid response health care communications system
    US-7245953-B1July 17, 2007Masimo CorporationReusable pulse oximeter probe and disposable bandage apparatii
    US-7039449-B2May 02, 2006Masimo CorporationResposable pulse oximetry sensor
    US-6939305-B2September 06, 2005Masimo CorporationRapid non-invasive blood pressure measuring device
    US-7483729-B2January 27, 2009Masimo CorporationPulse oximeter access apparatus and method
    US-6321100-B1November 20, 2001Sensidyne, Inc.Reusable pulse oximeter probe with disposable liner
    US-5871451-AFebruary 16, 1999Siemens Medical Systems, Inc.Apparatus and method for providing dual output signals in a telemetry transmitter
    US-6430525-B1August 06, 2002Masimo CorporationVariable mode averager
    US-7003338-B2February 21, 2006Masimo CorporationMethod and apparatus for reducing coupling between signals
    US-4916444-AApril 10, 1990King Fred NMethod and apparatus for mapping communications media
    US-6036642-AMarch 14, 2000Masimo CorporationSignal processing apparatus and method
    US-5995855-ANovember 30, 1999Masimo CorporationPulse oximetry sensor adapter
    US-RE38476-EMarch 30, 2004Masimo CorporationSignal processing apparatus
    WO-2007065015-A2June 07, 2007Masimo CorporationSysteme de notification d'alarmes physiologiques
    US-5767791-AJune 16, 1998VitalcomLow-power circuit and method for providing rapid frequency lock in a wireless communications device
    US-7027849-B2April 11, 2006Masimo Laboratories, Inc.Blood parameter measurement system
    US-6606511-B1August 12, 2003Masimo CorporationPulse oximetry pulse indicator
    US-4216462-AAugust 05, 1980General Electric CompanyPatient monitoring and data processing system
    US-5579001-ANovember 26, 1996Hewlett-Packard Co.Paging-based backchannel in a medical telemetry system
    US-7024233-B2April 04, 2006Masimo CorporationPulse oximetry data confidence indicator
    US-2007273504-A1November 29, 2007Bao TranMesh network monitoring appliance
    US-6377829-B1April 23, 2002Masimo CorporationResposable pulse oximetry sensor
    US-RE38492-EApril 06, 2004Masimo CorporationSignal processing apparatus and method
    US-5482036-AJanuary 09, 1996Masimo CorporationSignal processing apparatus and method
    US-7499835-B2March 03, 2009Masimo CorporationVariable indication estimator
    US-5041187-AAugust 20, 1991Thor Technology CorporationOximeter sensor assembly with integral cable and method of forming the same
    US-6027452-AFebruary 22, 2000Vital Insite, Inc.Rapid non-invasive blood pressure measuring device
    US-5638816-AJune 17, 1997Masimo CorporationActive pulse blood constituent monitoring
    US-6526300-B1February 25, 2003Masimo CorporationPulse oximeter probe-off detection system
    US-6684090-B2January 27, 2004Masimo CorporationPulse oximetry data confidence indicator
    US-5997343-ADecember 07, 1999Masimo CorporationPatient cable sensor switch
    US-6721585-B1April 13, 2004Sensidyne, Inc.Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
    US-6996427-B2February 07, 2006Masimo CorporationPulse oximetry data confidence indicator
    US-6950687-B2September 27, 2005Masimo CorporationIsolation and communication element for a resposable pulse oximetry sensor
    US-6684091-B2January 27, 2004Sensidyne, Inc.Reusable pulse oximeter probe and disposable bandage method
    US-6368283-B1April 09, 2002Institut De Recherches Cliniques De Montreal, Universite LavalMethod and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
    US-6792300-B1September 14, 2004Masimo CorporationLow-noise optical probes for reducing light piping
    US-7149561-B2December 12, 2006Masimo CorporationOptical spectroscopy pathlength measurement system
    US-5038800-AAugust 13, 1991Fukuda Denshi Co., Ltd.System for monitoring patient by using LAN
    US-6440067-B1August 27, 2002Altec, Inc.System and method for remotely monitoring functional activities
    US-7471971-B2December 30, 2008Masimo CorporationSignal processing apparatus and method
    US-5061916-AOctober 29, 1991Barber-Colman CompanyEvent driven remote graphical reporting of building automation system parameters
    US-7289835-B2October 30, 2007Masimo Laboratories, Inc.Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
    US-6760607-B2July 06, 2004Masimo CorporationRibbon cable substrate pulse oximetry sensor
    US-7440787-B2October 21, 2008Masimo Laboratories, Inc.Systems and methods for determining blood oxygen saturation values using complex number encoding
    US-5758644-AJune 02, 1998Masimo CorporationManual and automatic probe calibration
    US-5748103-AMay 05, 1998Vitalcom, Inc.Two-way TDMA telemetry system with power conservation features
    US-RE39672-EJune 05, 2007Cedars-Sinai Medical CenterMethod and devices for laser induced fluorescence attenuation spectroscopy
    US-5810734-ASeptember 22, 1998Vital Insite, Inc.Apparatus and method for measuring an induced perturbation to determine a physiological parameter
    US-7526328-B2April 28, 2009Masimo CorporationManual and automatic probe calibration
    US-6678543-B2January 13, 2004Masimo CorporationOptical probe and positioning wrap
    US-5341805-AAugust 30, 1994Cedars-Sinai Medical CenterGlucose fluorescence monitor and method
    US-5337744-AAugust 16, 1994Masimo CorporationLow noise finger cot probe
    US-6388240-B2May 14, 2002Masimo CorporationShielded optical probe and method having a longevity indication
    US-7415297-B2August 19, 2008Masimo CorporationPhysiological parameter system
    US-6699194-B1March 02, 2004Masimo CorporationSignal processing apparatus and method
    US-7332784-B2February 19, 2008Masimo CorporationMethod of providing an optoelectronic element with a non-protruding lens
    US-6184521-B1February 06, 2001Masimo CorporationPhotodiode detector with integrated noise shielding
    WO-02067122-A1August 29, 2002I-Medik, Inc.Systeme et interface de suivi de bio-telemetrie par internet hertzien
    US-7225007-B2May 29, 2007Masimo CorporationOptical sensor including disposable and reusable elements
    US-7096054-B2August 22, 2006Masimo CorporationLow noise optical housing
    US-2006080140-A1April 13, 2006Epic Systems CorporationSystem and method for providing a clinical summary of patient information in various health care settings
    US-6110522-AAugust 29, 2000Masimo LaboratoriesBlood glucose monitoring system
    US-6236872-B1May 22, 2001Masimo CorporationSignal processing apparatus
    US-7003339-B2February 21, 2006Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-5561275-AOctober 01, 1996Delstar Services Informatiques (1993) Inc.Headset for electronic stethoscope
    US-7454240-B2November 18, 2008Masimo CorporationSignal processing apparatus
    US-5278627-AJanuary 11, 1994Nihon Kohden CorporationApparatus for calibrating pulse oximeter
    US-7190261-B2March 13, 2007Masimo CorporationArrhythmia alarm processor
    US-5163438-ANovember 17, 1992Paramed Technology IncorporatedMethod and apparatus for continuously and noninvasively measuring the blood pressure of a patient
    US-5590649-AJanuary 07, 1997Vital Insite, Inc.Apparatus and method for measuring an induced perturbation to determine blood pressure
    US-5960431-ASeptember 28, 1999International Business Machines CorporationMethod and apparatus for adding data storage bins to a stored computer database while minimizing movement of data and balancing data distribution
    US-6584336-B1June 24, 2003Masimo CorporationUniversal/upgrading pulse oximeter
    US-6745060-B2June 01, 2004Masimo CorporationSignal processing apparatus
    US-6124597-ASeptember 26, 2000Cedars-Sinai Medical CenterMethod and devices for laser induced fluorescence attenuation spectroscopy
    US-6782093-B2August 24, 2004Blue Pumpkin Software, Inc.Graphical method and system for visualizing performance levels in time-varying environment
    US-5830131-ANovember 03, 1998Vital Insite, Inc.Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
    US-6263222-B1July 17, 2001Masimo CorporationSignal processing apparatus
    US-6650917-B2November 18, 2003Masimo CorporationSignal processing apparatus
    US-7377899-B2May 27, 2008Masimo CorporationSine saturation transform
    US-5638818-AJune 17, 1997Masimo CorporationLow noise optical probe
    US-7274955-B2September 25, 2007Masimo CorporationParameter compensated pulse oximeter
    US-7469157-B2December 23, 2008Masimo CorporationSignal processing apparatus
    US-6343224-B1January 29, 2002Sensidyne, Inc.Reusable pulse oximeter probe and disposable bandage apparatus
    US-7509494-B2March 24, 2009Masimo CorporationInterface cable
    US-5494043-AFebruary 27, 1996Vital Insite, Inc.Arterial sensor
    US-6671531-B2December 30, 2003Masimo CorporationSensor wrap including foldable applicator
    US-2006293571-A1December 28, 2006Skanda SystemsDistributed architecture for remote patient monitoring and caring
    US-6151516-ANovember 21, 2000Masimo LaboratoriesActive pulse blood constituent monitoring
    US-2006238333-A1October 26, 2006Welch Allyn Protocol, Inc.Personal status physiologic monitor system and architecture and related monitoring methods
    US-D363120-SOctober 10, 1995Stethoscope ear tip
    US-6045509-AApril 04, 2000Vital Insite, Inc.Apparatus and method for measuring an induced perturbation to determine a physiological parameter
    US-6770028-B1August 03, 2004Masimo CorporationDual-mode pulse oximeter
    US-7382247-B2June 03, 2008Welch Allyn, Inc.Personal status physiologic monitor system and architecture and related monitoring methods
    US-7483730-B2January 27, 2009Masimo CorporationLow-noise optical probes for reducing ambient noise
    US-6088607-AJuly 11, 2000Masimo CorporationLow noise optical probe
    US-6961598-B2November 01, 2005Masimo CorporationPulse and active pulse spectraphotometry
    US-7500950-B2March 10, 2009Masimo CorporationMultipurpose sensor port
    US-6970792-B1November 29, 2005Masimo Laboratories, Inc.Systems and methods for determining blood oxygen saturation values using complex number encoding
    US-6505059-B1January 07, 2003The General Hospital CorporationNon-invasive tissue glucose level monitoring
    US-7377794-B2May 27, 2008Masimo CorporationMultiple wavelength sensor interconnect
    US-7292883-B2November 06, 2007Masimo CorporationPhysiological assessment system
    US-6985764-B2January 10, 2006Masimo CorporationFlex circuit shielded optical sensor
    US-5769785-AJune 23, 1998Masimo CorporationSignal processing apparatus and method
    US-2008004499-A1January 03, 2008Davis Carl CSystem and method for the processing of alarm and communication information in centralized patient monitoring
    US-6285896-B1September 04, 2001Masimo CorporationFetal pulse oximetry sensor
    US-6081735-AJune 27, 2000Masimo CorporationSignal processing apparatus
    US-5490505-AFebruary 13, 1996Masimo CorporationSignal processing apparatus
    US-6397091-B2May 28, 2002Masimo CorporationManual and automatic probe calibration
    US-5319363-AJune 07, 1994The General Hospital CorporationNetwork for portable patient monitoring devices
    US-7215986-B2May 08, 2007Masimo CorporationSignal processing apparatus
    US-6597932-B2July 22, 2003Argose, Inc.Generation of spatially-averaged excitation-emission map in heterogeneous tissue
    US-6852083-B2February 08, 2005Masimo CorporationSystem and method of determining whether to recalibrate a blood pressure monitor
    US-6632181-B2October 14, 2003Masimo CorporationRapid non-invasive blood pressure measuring device
    US-7355512-B1April 08, 2008Masimo CorporationParallel alarm processor
    US-6830711-B2December 14, 2004Masimo CorporationMold tool for an optoelectronic element
    US-7096052-B2August 22, 2006Masimo CorporationOptical probe including predetermined emission wavelength based on patient type
    US-7373194-B2May 13, 2008Masimo CorporationSignal component processor
    US-2005206518-A1September 22, 2005Welch Allyn Protocol, Inc.Personal status physiologic monitor system and architecture and related monitoring methods
    US-7383070-B2June 03, 2008Masimo CorporationSignal processing apparatus
    US-6826419-B2November 30, 2004Masimo CorporationSignal processing apparatus and method
    US-6822564-B2November 23, 2004Masimo CorporationParallel measurement alarm processor
    US-5934925-AAugust 10, 1999Masimo CorporationPatient cable connector
    US-6144868-ANovember 07, 2000Sensidyne, Inc.Reusable pulse oximeter probe and disposable bandage apparatus
    US-7328053-B1February 05, 2008Masimo CorporationSignal processing apparatus
    US-6643530-B2November 04, 2003Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-6898452-B2May 24, 2005Masimo CorporationStereo pulse oximeter
    US-6771994-B2August 03, 2004Masimo CorporationPulse oximeter probe-off detection system
    US-5743262-AApril 28, 1998Masimo CorporationBlood glucose monitoring system
    US-6544173-B2April 08, 2003Welch Allyn Protocol, Inc.Patient monitoring system
    US-5685299-ANovember 11, 1997Masimo CorporationSignal processing apparatus
    US-6241683-B1June 05, 2001INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM), Mcgill UniversityPhonospirometry for non-invasive monitoring of respiration
    US-6728560-B2April 27, 2004The General Hospital CorporationNon-invasive tissue glucose level monitoring
    US-5823950-AOctober 20, 1998Masimo CorporationManual and automatic probe calibration
    US-7225006-B2May 29, 2007Masimo CorporationAttachment and optical probe
    US-5632272-AMay 27, 1997Masimo CorporationSignal processing apparatus
    US-7373193-B2May 13, 2008Masimo CorporationPulse oximetry data capture system
    US-5069213-ADecember 03, 1991Thor Technology CorporationOximeter sensor assembly with integral cable and encoder
    US-6229856-B1May 08, 2001Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-7067893-B2June 27, 2006Masimo CorporationOptoelectronic element with a non-protruding lens
    US-6165005-ADecember 26, 2000Masimo CorporationPatient cable sensor switch
    US-D353195-SDecember 06, 1994Electronic stethoscope housing
    US-2007180140-A1August 02, 2007Welch James P, Anand Sampath, Mazen ShihabiPhysiological alarm notification system
    US-D359546-SJune 20, 1995The Ratechnologies Inc.Housing for a dental unit disinfecting device
    US-6697658-B2February 24, 2004Masimo CorporationLow power pulse oximeter
    US-6993371-B2January 31, 2006Masimo CorporationPulse oximetry sensor adaptor
    US-6931268-B1August 16, 2005Masimo Laboratories, Inc.Active pulse blood constituent monitoring
    US-6697656-B1February 24, 2004Masimo CorporationPulse oximetry sensor compatible with multiple pulse oximetry systems
    US-6816741-B2November 09, 2004Masimo CorporationPlethysmograph pulse recognition processor
    US-4960128-AOctober 02, 1990Paramed Technology IncorporatedMethod and apparatus for continuously and non-invasively measuring the blood pressure of a patient
    US-6920345-B2July 19, 2005Masimo CorporationOptical sensor including disposable and reusable elements
    US-6813511-B2November 02, 2004Masimo CorporationLow-noise optical probes for reducing ambient noise
    US-7132641-B2November 07, 2006Masimo CorporationShielded optical probe having an electrical connector
    US-6256523-B1July 03, 2001Masimo CorporationLow-noise optical probes
    US-7272425-B2September 18, 2007Masimo CorporationPulse oximetry sensor including stored sensor data
    US-D361840-SAugust 29, 1995Stethoscope head
    US-6519487-B1February 11, 2003Sensidyne, Inc.Reusable pulse oximeter probe and disposable bandage apparatus
    US-7530942-B1May 12, 2009Masimo CorporationRemote sensing infant warmer
    US-6112226-AAugust 29, 2000Oracle CorporationMethod and apparatus for concurrently encoding and tagging digital information for allowing non-sequential access during playback
    US-5431170-AJuly 11, 1995Mathews; Geoffrey R.Pulse responsive device
    US-7341559-B2March 11, 2008Masimo CorporationPulse oximetry ear sensor
    US-6850787-B2February 01, 2005Masimo Laboratories, Inc.Signal component processor
    US-6360114-B1March 19, 2002Masimo CorporationPulse oximeter probe-off detector
    US-5377676-AJanuary 03, 1995Cedars-Sinai Medical CenterMethod for determining the biodistribution of substances using fluorescence spectroscopy
    EP-1443480-A2August 04, 2004Nokia CorporationMobiltelefon mit Komponenten zur nicht-invasiven Messung
    US-5752917-AMay 19, 1998Siemens Medical Systems, Inc.Network connectivity for a portable patient monitor
    US-4920339-AApril 24, 1990Western Digital Corp.Switchable bus termination and address selector
    US-5833618-ANovember 10, 1998Vital Insite, Inc.Apparatus and method for measuring an induced perturbation to determine a physiological parameter
    US-7499741-B2March 03, 2009Masimo CorporationSignal processing apparatus and method
    US-6463311-B1October 08, 2002Masimo CorporationPlethysmograph pulse recognition processor
    US-5694940-ADecember 09, 1997Siemens Medical Systems, Inc.Apparatus and method for providing dual output signals in a telemetry transmitter
    US-7467002-B2December 16, 2008Masimo CorporationSine saturation transform
    US-7254431-B2August 07, 2007Masimo CorporationPhysiological parameter tracking system
    US-7496391-B2February 24, 2009Masimo CorporationManual and automatic probe calibration
    US-7489958-B2February 10, 2009Masimo CorporationSignal processing apparatus and method
    US-7340287-B2March 04, 2008Masimo CorporationFlex circuit shielded optical sensor
    US-2006129713-A1June 15, 2006Xie Ian ZPipeline architecture for content creation for the portable media player from the internet
    US-7530955-B2May 12, 2009Masimo CorporationSignal processing apparatus
    US-7015451-B2March 21, 2006Masimo CorporationPower supply rail controller
    US-7438683-B2October 21, 2008Masimo CorporationApplication identification sensor
    US-7563110-B2July 21, 2009Masimo Laboratories, Inc.Multiple wavelength sensor interconnect
    US-7295866-B2November 13, 2007Masimo CorporationLow power pulse oximeter
    US-7471969-B2December 30, 2008Masimo CorporationPulse oximeter probe-off detector
    US-7186966-B2March 06, 2007Masimo CorporationAmount of use tracking device and method for medical product
    US-2006253042-A1November 09, 2006Stahmann Jeffrey E, Hatlestad John D, Hartley Jesse W, Avram ScheinerSyncope logbook and method of using same
    US-7221971-B2May 22, 2007Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-7239905-B2July 03, 2007Masimo Laboratories, Inc.Active pulse blood constituent monitoring
    US-6943348-B1September 13, 2005Masimo CorporationSystem for detecting injection holding material
    US-7496393-B2February 24, 2009Masimo CorporationSignal processing apparatus
    US-2005231374-A1October 20, 2005Diem Bjorn H, Stefan Paule, Norbert Petsch, Albrecht UrbaszekData management system
    US-D554263-SOctober 30, 2007Masimo CorporationPortable patient monitor
    US-7376453-B1May 20, 2008Masimo CorporationSignal processing apparatus
    US-2007239377-A1October 11, 2007Bruce ReinerMethod and apparatus for generating a clinician quality assurance scoreboard
    US-D353196-SDecember 06, 1994Stethoscope head
    US-6714804-B2March 30, 2004Masimo CorporationStereo pulse oximeter

NO-Patent Citations (48)

    Title
    Decision to Refuse European Patent Application issued in European Application No. 08837990.4 on Apr. 10, 2012. European Application No. 08837990.4 shares the same specification as the present application.
    DeVita, Michael A., MD, "Medical Emergency Teams: A Vision of the Future," Critical Connections, Feb. 2005, pp. 12-13.
    Emergin "General Overview," http://www.emergin.com/technology/default.html, downloaded and printed from the Internet on Dec. 1, 2006 in 2 pages.
    EPO Communication Pursuant to Article 94(3) EPC in European Application No. 08837990.4 dated Dec. 27, 2010. European Application No. 08837990.4 shares the same specification as the present application.
    International Search Report and Written Opinion for International Application No. PCT/US2006/046295, mailed on Dec. 17, 2007.
    International Search Report and Written Opinion for International Application No. PCT/US2008/079643, mailed on Apr. 1, 2009.
    Kang, Ho Hyun et al., "Wired/Wireless Integrated Medical Information Prototype System Using Web Service," Enterprise Networking and Computing in Healthcare Industry, 2005, Healthcom 2005, Proceedings of 7th International Workshop on Busan, South Korea , Jun. 23-25, 2005, Piscataway, NJ, USA, pp. 41-44. ISBN: 0-7803-8940-9.
    Lopez-Casado, C. et al., "Network architecture for global biomedical monitoring service," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Sep. 1-4, 2005, Shanghai, China, Sep. 1, 2005, pp. 2433-2436, IEEE, Piscataway, New Jersey, XP010908741, ISBN: 978-0-7803-8741-6.
    Lubrin, E. et al., "An Architecture for Wearable, Wireless, Smart Biosensors: The MoteCare Prototype," Proceedings of the International Conference on Networking, International Conference on Systems, and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL'06) International Conference on Morne, Mauritius, Apr. 23-29, 2006, pp. 202-202, XP010914787, ISBN: 978-0-7695-2552-5.
    Lubrin, E. et al., "MoteCare: An Adaptive Smart BAN Health Monitoring System," Proceedings of the 24th Lasted International Multi-Conference, Biomedical Engineering, Feb. 15-17, 2006, Innsbruck, Austria, Jan. 1, 2006, pp. 60-67, vol. 2006, XP009110338.
    Oetiker, T., "MRTG-The Multi Router Traffic Grapher," Proceedings of the Systems Administration Conference, 1998 Lisa XII, Dec. 6-11, 1998, pp. 141-147, Boston, Massachusetts, XP002302089.
    Oxford BioSignals Starts Clinical Tirals in US of BioSign Patient Monitoring Technology. Medical Technology Business Europe (Mar. 3, 2005).
    Provision of the Minutes in Accordance with Rule 124(4) EPC in European Application No. 08837990.4 dated Apr. 10, 2012. European Application No. 08837990.4 shares the same specification as the present application.
    Riudavets, J. et al., "Multi Router Traffic Grapher (MRTG) for Body Area Network (BAN) Surveillance," WSEAS Transactions on Computers, Dec. 1, 2004, pp. 1856-1862, vol. 3(6), XP009110341, ISSN: 1109-2750.
    Summons to Attend Oral Proceedings in European Application No. 08837990.4 dated Dec. 14, 2011. European Application No. 08837990.4 shares the same specification as the present application.
    WelchAllyn, "Accessories," http://www.monitoring.welchallyn.com/products/accessories/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Acuity® Central Station," http://www.monitoring.welchallyn.com/products/systems/acuitycentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Acuity® LT Central Station," http://www.monitoring.welchallyn.com/products/systems/acuityLTcentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Atlas(TM)," http://www.monitoring.welchallyn.com/products/portable/atlas.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Care Units," http://www.monitoring.welchallyn.com/products/careunits/, downloded and printed from the Internet on Nov. 14, 2006 in 5 pages.
    WelchAllyn, "Centralized Monitoring Systems," http://www.monitoring.welchallyn.com/products/systems/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Centralized Monitoring," http://www.monitoring.welchallyn.com/products/applications/centralized.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Dedicated Network Monitors," http://www.monitoring.welchallyn.com/products/systems/dedicated.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Flexible Monitoring," http://www.monitoring.welchallyn.com/products/systems/flexible.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "FlexNet(TM)," http://www.monitoring.welchallyn.com/products/wireless/flexnet.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Institution-Wide General Purpose Monitoring," http://www.monitoring.welchallyn.com/products/systems/institution.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Micropaq®," http://www.monitoring.welchallyn.com/products/wireless/micropaq.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Miltary Field & Hospital," http://www.monitoring.welchallyn.com/products/applications/military.asp, downloaded and printed from Internet on Nov. 14, 2006 2 pages.
    WelchAllyn, "Mobile Acuity LT(TM) Central Station," http://www.monitoring.welchallyn.com/products/systems/mobileacuityLTcentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Monitoring Applications," http://www.monitoring.welchallyn.com/products/applications/, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Motion Tolerant Propaq Encore®," http://www.monitoring.welchallyn.com/products/portable/motiontolerantenc.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Motion Tolerant Propaq® CS," http://www.monitoring.welchallyn.com/products/portable/motiontolerantcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Networked Acuity®," http://www.monitoring.welchallyn.com/products/systems/acuitynet.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Partners," http://www.monitoring.welchallyn.com/products/partners/, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Portable Bedside Monitoring," http://www.monitoring.welchallyn.com/products/applications/portablebed.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Portable Monitors," http://www.monitoring.welchallyn.com/products/portable/, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Process Reegineering," http://www.monitoring.welchallyn.com/products/systems/processreeng.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Product Overview," http://www.monitoring.welchallyn.com/products/, downloaed and printed from the Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Propaq Encore®," http://www.monitoring.welchallyn.com/products/portable/propaqencore.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Propaq® CS," http://www.monitoring.welchallyn.com/products/portable/propaqcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Refurbished Monitors," http://www.monitoring.welchallyn.com/products/portable/refurbished.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Resource Library," http://www.monitoring.welchallyn.com/products/wireless/resourcelib.asp, downloaded and printed from Internet on Nov. 14, 2006 in 3 pages.
    WelchAllyn, "Spot Vital Signs®," http://www.monitoring.welchallyn.com/products/portable/spotvitalsigns.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Transport Monitoring," http://www.monitoring.welchallyn.com/products/applications/transport.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Vital Signs Monitor 300 Series," http://www.monitoring.welchallyn.com/products/portable/vitalsigns.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Welch Allyn OEM Technologies," http://www.monitoring.welchallyn.com/products/oemtech/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.
    WelchAllyn, "Wireless Propaq® CS," http://www.monitoring.welchallyn.com/products/wireless/wirelesspropaqcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages.
    WelchAllyn, "Wireless/Telemetry Monitoring," http://www.monitoring.welchallyn.com/products/wireless/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page.

Cited By (172)

    Publication numberPublication dateAssigneeTitle
    US-9795358-B2October 24, 2017Masimo CorporationAcoustic sensor assembly
    US-RE44823-EApril 01, 2014Masimo CorporationUniversal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
    US-9724025-B1August 08, 2017Masimo CorporationActive-pulse blood analysis system
    US-9750442-B2September 05, 2017Masimo CorporationPhysiological status monitor
    US-9839381-B1December 12, 2017Cercacor Laboratories, Inc.Physiological measurement system with automatic wavelength adjustment
    US-8921699-B2December 30, 2014Masimo CorporationLow noise oximetry cable including conductive cords
    US-9877686-B2January 30, 2018Masimo CorporationSystem for determining confidence in respiratory rate measurements
    US-8862196-B2October 14, 2014Lawrence A. LynnSystem and method for automatic detection of a plurality of SP02 time series pattern types
    US-9042952-B2May 26, 2015Lawrence A. LynnSystem and method for automatic detection of a plurality of SPO2 time series pattern types
    US-9750461-B1September 05, 2017Masimo CorporationAcoustic respiratory monitoring sensor with probe-off detection
    US-8700112-B2April 15, 2014Masimo CorporationSecondary-emitter sensor position indicator
    US-9113832-B2August 25, 2015Masimo CorporationWrist-mounted physiological measurement device
    US-9549696-B2January 24, 2017Cercacor Laboratories, Inc.Physiological parameter confidence measure
    US-8715206-B2May 06, 2014Masimo CorporationAcoustic patient sensor
    US-9031793-B2May 12, 2015Lawrence A. LynnCentralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
    US-8548549-B2October 01, 2013Glt Acquisition Corp.Methods for noninvasively measuring analyte levels in a subject
    US-9861305-B1January 09, 2018Masimo CorporationMethod and apparatus for calibration to reduce coupling between signals in a measurement system
    US-9153121-B2October 06, 2015Masimo CorporationAlarm suspend system
    US-9566019-B2February 14, 2017Masimo CorporationRespiratory monitoring
    US-9138180-B1September 22, 2015Masimo CorporationSensor adapter cable
    US-9808188-B1November 07, 2017Masimo CorporationRobust fractional saturation determination
    US-8821397-B2September 02, 2014Masimo CorporationDepth of consciousness monitor including oximeter
    US-9554737-B2January 31, 2017Masimo CorporationNoninvasively measuring analyte levels in a subject
    US-9693719-B2July 04, 2017Masimo CorporationNoninvasive oximetry optical sensor including disposable and reusable elements
    US-2014315494-A1October 23, 2014Samsung Electronics Co. Ltd.Proxy communication system in ban environment and control method thereof
    US-8870792-B2October 28, 2014Masimo CorporationPhysiological acoustic monitoring system
    US-D755392-SMay 03, 2016Masimo CorporationPulse oximetry sensor
    US-8768423-B2July 01, 2014Glt Acquisition Corp.Multispot monitoring for use in optical coherence tomography
    US-9161696-B2October 20, 2015Masimo CorporationModular patient monitor
    US-9186102-B2November 17, 2015Cercacor Laboratories, Inc.Emitter driver for noninvasive patient monitor
    US-8666467-B2March 04, 2014Lawrence A. LynnSystem and method for SPO2 instability detection and quantification
    US-8888539-B2November 18, 2014Masimo CorporationShielded connector assembly
    US-9474474-B2October 25, 2016Masimo CorporationPatient monitor as a minimally invasive glucometer
    US-9717425-B2August 01, 2017Masimo CorporationNoise shielding for a noninvaise device
    US-8892180-B2November 18, 2014Masimo CorporationSine saturation transform
    US-9386961-B2July 12, 2016Masimo CorporationPhysiological acoustic monitoring system
    US-9668680-B2June 06, 2017Masimo CorporationEmitter driver for noninvasive patient monitor
    US-8821415-B2September 02, 2014Masimo CorporationPhysiological acoustic monitoring system
    US-9636056-B2May 02, 2017Masimo CorporationPhysiological trend monitor
    US-9192312-B2November 24, 2015Masimo CorporationPatient monitor for determining microcirculation state
    US-8996085-B2March 31, 2015Masimo CorporationRobust alarm system
    US-9801556-B2October 31, 2017Masimo CorporationPatient monitor for monitoring microcirculation
    US-8840549-B2September 23, 2014Masimo CorporationModular patient monitor
    US-9795739-B2October 24, 2017Masimo CorporationHemoglobin display and patient treatment
    US-9560996-B2February 07, 2017Masimo CorporationUniversal medical system
    US-8532727-B2September 10, 2013Masimo CorporationDual-mode pulse oximeter
    US-D788312-SMay 30, 2017Masimo CorporationWireless patient monitoring device
    US-9521971-B2December 20, 2016Lawrence A. LynnSystem and method for automatic detection of a plurality of SPO2 time series pattern types
    US-9392945-B2July 19, 2016Masimo CorporationAutomated CCHD screening and detection
    US-9357339-B2May 31, 2016Samsung Electronics Co., Ltd.Proxy communication system and control method thereof in ban environment
    US-9560998-B2February 07, 2017Masimo CorporationSystem and method for monitoring the life of a physiological sensor
    US-8983564-B2March 17, 2015Masimo CorporationPerfusion index smoother
    US-9775545-B2October 03, 2017Masimo CorporationMagnetic electrical connector for patient monitors
    US-9153112-B1October 06, 2015Masimo CorporationModular patient monitor
    US-8830449-B1September 09, 2014Cercacor Laboratories, Inc.Blood analysis system
    US-9693737-B2July 04, 2017Masimo CorporationPhysiological measurement logic engine
    US-9622693-B2April 18, 2017Masimo CorporationSystems and methods for determining blood oxygen saturation values using complex number encoding
    US-9649054-B2May 16, 2017Cercacor Laboratories, Inc.Blood pressure measurement method
    US-9668679-B2June 06, 2017Masimo CorporationMethod for data reduction and calibration of an OCT-based physiological monitor
    US-8771204-B2July 08, 2014Masimo CorporationAcoustic sensor assembly
    US-9386953-B2July 12, 2016Masimo CorporationMethod of sterilizing a reusable portion of a noninvasive optical probe
    US-9468378-B2October 18, 2016Lawrence A. LynnAirway instability detection system and method
    US-9532722-B2January 03, 2017Masimo CorporationPatient monitoring system
    US-9131881-B2September 15, 2015Masimo CorporationHypersaturation index
    US-9113831-B2August 25, 2015Masimo CorporationPhysiological measurement communications adapter
    US-9579039-B2February 28, 2017Masimo CorporationNon-invasive intravascular volume index monitor
    US-8920317-B2December 30, 2014Masimo CorporationMultipurpose sensor port
    US-9697928-B2July 04, 2017Masimo CorporationAutomated assembly sensor cable
    US-9750443-B2September 05, 2017Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
    US-9538980-B2January 10, 2017Masimo CorporationAcoustic respiratory monitoring sensor having multiple sensing elements
    US-9245668-B1January 26, 2016Cercacor Laboratories, Inc.Low noise cable providing communication between electronic sensor components and patient monitor
    US-8948835-B2February 03, 2015Cercacor Laboratories, Inc.Systems and methods for determining blood oxygen saturation values using complex number encoding
    US-9277880-B2March 08, 2016Masimo CorporationMulti-stream data collection system for noninvasive measurement of blood constituents
    US-9622692-B2April 18, 2017Masimo CorporationPersonal health device
    US-9782077-B2October 10, 2017Masimo CorporationModulated physiological sensor
    US-9084569-B2July 21, 2015Cercacor Laboratories, Inc.Method and apparatus for reducing coupling between signals in a measurement system
    US-9295421-B2March 29, 2016Masimo CorporationNon-invasive physiological sensor cover
    US-8755872-B1June 17, 2014Masimo CorporationPatient monitoring system for indicating an abnormal condition
    US-8723677-B1May 13, 2014Masimo CorporationPatient safety system with automatically adjusting bed
    US-9107625-B2August 18, 2015Masimo CorporationPulse oximetry system with electrical decoupling circuitry
    US-8728001-B2May 20, 2014Lawrence A. LynnNasal capnographic pressure monitoring system
    US-9370326-B2June 21, 2016Masimo CorporationOximeter probe off indicator defining probe off space
    US-8781544-B2July 15, 2014Cercacor Laboratories, Inc.Multiple wavelength optical sensor
    US-9131882-B2September 15, 2015Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
    US-9848800-B1December 26, 2017Masimo CorporationRespiratory pause detector
    US-9370325-B2June 21, 2016Masimo CorporationHemoglobin display and patient treatment
    US-9787568-B2October 10, 2017Cercacor Laboratories, Inc.Physiological test credit method
    US-9053222-B2June 09, 2015Lawrence A. LynnPatient safety processor
    US-9872623-B2January 23, 2018Masimo CorporationArm mountable portable patient monitor
    US-9749232-B2August 29, 2017Masimo CorporationIntelligent medical network edge router
    US-9241662-B2January 26, 2016Cercacor Laboratories, Inc.Configurable physiological measurement system
    US-9833152-B2December 05, 2017Masimo CorporationOptical-based physiological monitoring system
    US-9839379-B2December 12, 2017Masimo CorporationRegional oximetry pod
    US-8932227-B2January 13, 2015Lawrence A. LynnSystem and method for CO2 and oximetry integration
    US-9662052-B2May 30, 2017Masimo CorporationReprocessing of a physiological sensor
    US-9218454-B2December 22, 2015Masimo CorporationMedical monitoring system
    US-9323894-B2April 26, 2016Masimo CorporationHealth care sanitation monitoring system
    US-9066680-B1June 30, 2015Masimo CorporationSystem for determining confidence in respiratory rate measurements
    US-9492110-B2November 15, 2016Masimo CorporationPhysiological monitor
    US-9351675-B2May 31, 2016Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
    US-9370335-B2June 21, 2016Masimo CorporationPhysiological acoustic monitoring system
    US-9538949-B2January 10, 2017Masimo CorporationDepth of consciousness monitor including oximeter
    US-8886271-B2November 11, 2014Cercacor Laboratories, Inc.Non-invasive physiological sensor cover
    US-9801588-B2October 31, 2017Cercacor Laboratories, Inc.Method and apparatus for reducing coupling between signals in a measurement system
    US-8718737-B2May 06, 2014Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-9397448-B2July 19, 2016Masimo CorporationShielded connector assembly
    US-8666468-B1March 04, 2014Masimo CorporationPatient monitor for determining microcirculation state
    US-9675286-B2June 13, 2017Masimo CorporationPlethysmograph pulse recognition processor
    US-9445759-B1September 20, 2016Cercacor Laboratories, Inc.Blood glucose calibration system
    US-9687160-B2June 27, 2017Masimo CorporationCongenital heart disease monitor
    US-9775546-B2October 03, 2017Masimo CorporationHypersaturation index
    US-8909310-B2December 09, 2014Cercacor Laboratories, Inc.Multi-stream sensor front ends for noninvasive measurement of blood constituents
    US-8847740-B2September 30, 2014Masimo CorporationAlarm suspend system
    US-8965471-B2February 24, 2015Cercacor Laboratories, Inc.Tissue profile wellness monitor
    US-9480435-B2November 01, 2016Masimo CorporationConfigurable patient monitoring system
    US-9028429-B2May 12, 2015Masimo CorporationAcoustic sensor assembly
    US-9259185-B2February 16, 2016Masimo CorporationEar sensor
    US-9867578-B2January 16, 2018Masimo CorporationPhysiological acoustic monitoring system
    US-9795300-B2October 24, 2017Masimo CorporationWearable portable patient monitor
    US-9724024-B2August 08, 2017Masimo CorporationAdaptive alarm system
    US-8721541-B2May 13, 2014Masimo CorporationPhysiological monitor
    US-9226696-B2January 05, 2016Masimo CorporationPatient safety system with automatically adjusting bed
    US-9591975-B2March 14, 2017Masimo CorporationContoured protrusion for improving spectroscopic measurement of blood constituents
    US-9351673-B2May 31, 2016Masimo CorporationMethod and apparatus for demodulating signals in a pulse oximetry system
    US-9517024-B2December 13, 2016Masimo CorporationOptical-based physiological monitoring system
    US-9778079-B1October 03, 2017Masimo CorporationPhysiological monitor gauge panel
    US-9848807-B2December 26, 2017Masimo CorporationTissue profile wellness monitor
    US-9795310-B2October 24, 2017Masimo CorporationPatient monitor for determining microcirculation state
    US-8781543-B2July 15, 2014Jpmorgan Chase Bank, National AssociationManual and automatic probe calibration
    US-9195385-B2November 24, 2015Masimo CorporationPhysiological monitor touchscreen interface
    US-9408542-B1August 09, 2016Masimo CorporationNon-invasive blood pressure measurement system
    US-9724016-B1August 08, 2017Masimo Corp.Respiration processor
    US-9730640-B2August 15, 2017Masimo CorporationPulse oximeter probe-off detector
    US-9138182-B2September 22, 2015Cercacor Laboratories, Inc.Optical sensor including disposable and reusable elements
    US-9307928-B1April 12, 2016Masimo CorporationPlethysmographic respiration processor
    US-9211095-B1December 15, 2015Masimo CorporationPhysiological measurement logic engine
    US-8676286-B2March 18, 2014Cercacor Laboratories, Inc.Method and apparatus for reducing coupling between signals in a measurement system
    US-9192351-B1November 24, 2015Masimo CorporationAcoustic respiratory monitoring sensor with probe-off detection
    US-9161713-B2October 20, 2015Masimo CorporationMulti-mode patient monitor configured to self-configure for a selected or determined mode of operation
    US-9848806-B2December 26, 2017Masimo CorporationLow power pulse oximeter
    US-9861304-B2January 09, 2018Cercacor Laboratories, Inc.Optical sensor including disposable and reusable elements
    US-9775570-B2October 03, 2017Masimo CorporationAdaptive alarm system
    US-8911377-B2December 16, 2014Masimo CorporationPatient monitor including multi-parameter graphical display
    US-8702627-B2April 22, 2014Masimo CorporationAcoustic respiratory monitoring sensor having multiple sensing elements
    US-9131917-B2September 15, 2015Masimo CorporationAcoustic sensor assembly
    US-9211072-B2December 15, 2015Masimo CorporationDisposable active pulse sensor
    US-9847002-B2December 19, 2017Masimo CorporationModular patient monitor
    US-9167995-B2October 27, 2015Cercacor Laboratories, Inc.Physiological parameter confidence measure
    US-9037207-B2May 19, 2015Masimo CorporationHemoglobin display and patient treatment
    US-9814418-B2November 14, 2017Masimo CorporationSine saturation transform
    US-9717458-B2August 01, 2017Masimo CorporationMagnetic-flap optical sensor
    US-9782110-B2October 10, 2017Masimo CorporationOpticoustic sensor
    US-9192329-B2November 24, 2015Masimo CorporationVariable mode pulse indicator
    US-9876320-B2January 23, 2018Masimo CorporationSensor adapter cable
    US-8761850-B2June 24, 2014Masimo CorporationReflection-detector sensor position indicator
    US-9078560-B2July 14, 2015Glt Acquisition Corp.Method for data reduction and calibration of an OCT-based physiological monitor
    US-8755535-B2June 17, 2014Masimo CorporationAcoustic respiratory monitoring sensor having multiple sensing elements
    US-8788003-B2July 22, 2014Glt Acquisition Corp.Monitoring blood constituent levels in biological tissue
    US-9833180-B2December 05, 2017Masimo CorporationMultispot monitoring for use in optical coherence tomography
    US-9142117-B2September 22, 2015Masimo CorporationSystems and methods for storing, analyzing, retrieving and displaying streaming medical data
    US-8706179-B2April 22, 2014Masimo CorporationReusable pulse oximeter probe and disposable bandage apparatii
    US-9436645-B2September 06, 2016Masimo CorporationMedical monitoring hub
    US-8690799-B2April 08, 2014Masimo CorporationAcoustic respiratory monitoring sensor having multiple sensing elements
    US-8626255-B2January 07, 2014Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
    US-9119595-B2September 01, 2015Masimo CorporationReflection-detector sensor position indicator
    US-9060721-B2June 23, 2015Glt Acquisition Corp.Flowometry in optical coherence tomography for analyte level estimation
    US-9131883-B2September 15, 2015Masimo CorporationPhysiological trend monitor
    US-8571617-B2October 29, 2013Glt Acquisition Corp.Flowometry in optical coherence tomography for analyte level estimation
    US-8430817-B1April 30, 2013Masimo CorporationSystem for determining confidence in respiratory rate measurements
    US-8801613-B2August 12, 2014Masimo CorporationCalibration for multi-stage physiological monitors
    US-9510779-B2December 06, 2016Masimo CorporationAnalyte monitoring using one or more accelerometers
    US-9788735-B2October 17, 2017Masimo CorporationBody worn mobile medical patient monitor